DprA from Neisseria meningitidis: properties and role in natural competence for transformation
نویسندگان
چکیده
DNA processing chain A (DprA) is a DNA-binding protein that is ubiquitous in bacteria and expressed in some archaea. DprA is active in many bacterial species that are competent for transformation of DNA, but its role in Neisseriameningitidis (Nm) is not well characterized. An Nm mutant lacking DprA was constructed, and the phenotypes of the wild-type and ΔdprA mutant were compared. The salient feature of the phenotype of dprA null cells is the total lack of competence for genetic transformation shown by all of the donor DNA substrates tested in this study. Here, Nm wild-type and dprA null cells appeared to be equally resistant to genotoxic stress. The gene encoding DprANm was cloned and overexpressed, and the biological activities of DprANm were further investigated. DprANm binds ssDNA more strongly than dsDNA, but lacks DNA uptake sequence-specific DNA binding. DprANm dimerization and interaction with the C-terminal part of the single-stranded binding protein SSBNmwere demonstrated. dprA is co-expressed with smg, a downstream gene of unknown function, and the gene encoding topoisomerase 1, topA.
منابع مشابه
Functional characterization of the competence protein DprA/Smf in Escherichia coli.
In several bacterial species that show natural transformation, dprA has been described as a competence gene. The DprA protein has been suggested to be involved in the protection of incoming DNA. However, members of the dprA gene family (also called smf) can be detected in virtually all bacterial species, which suggests that their gene products have a more general function. We examined the funct...
متن کاملIn Silico Studies of Outer Membrane of Neisseria Meningitidis PorA: Its Expression and Immunogenic Properties
Neisseria meningitidis is a major causative agent of bacterial septicemia and meningitis in humans. Currently, there are no vaccines to prevent disease caused by strains of N.meningitidis serogroup B. The Class 1 Outer Membrane Protein (OMP) has been named porA which is a cation selective transmembrane protein of 45 KDa that forms trimeric pore in the meningococcal outer membrane. PorA from ser...
متن کاملIn silico Analysis and Modeling of ACP-MIP–PilQ Chimeric Antigen from Neisseria meningitidis Serogroup B
Background: Neisseria meningitidis, a life-threatening human pathogen with the potential to cause large epidemics, can be isolated from the nasopharynx of 5–15% of adults. The aim of the current study was to evaluate biophysical and biochemical properties and immunological aspects of chimeric acyl-carrier protein-macrophage infectivity potentiator protein-type IV pilus biogenesis protein ...
متن کاملComE, a competence protein from Neisseria gonorrhoeae with DNA-binding activity.
Neisseria gonorrhoeae is naturally able to take up exogenous DNA and undergo genetic transformation. This ability correlates with the presence of functional type IV pili, and uptake of DNA is dependent on the presence of a specific 10-bp sequence. Among the known competence factors in N. gonorrhoeae, none has been shown to interact with the incoming DNA. Here we describe ComE, a DNA-binding pro...
متن کاملDirect involvement of DprA, the transformation-dedicated RecA loader, in the shut-off of pneumococcal competence.
Natural bacterial transformation is a genetically programmed process allowing genotype alterations that involves the internalization of DNA and its chromosomal integration catalyzed by the universal recombinase RecA, assisted by its transformation-dedicated loader, DNA processing protein A (DprA). In Streptococcus pneumoniae, the ability to internalize DNA, known as competence, is transient, de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 163 شماره
صفحات -
تاریخ انتشار 2017